BTC
ETH
HTX
SOL
BNB
查看行情
简中
繁中
English
日本語
한국어
ภาษาไทย
Tiếng Việt

多維度解析DePIN如何助力人工智能?

星球君的朋友们
Odaily资深作者
2023-06-16 09:20
本文約4613字,閱讀全文需要約7分鐘
AI 為什麼離不開區塊鏈?
AI總結
展開
AI 為什麼離不開區塊鏈?

原文來源:Portal Ventures原文來源:Catrina

原文來源:Filecoin Network

過去,初創企業憑藉其速度、靈活度和創業文化,擺脫組織慣性桎梏,長期引領著技術創新。然而,這一切被人工智能時代改寫。迄今為止,突破性AI 產品的締造者都是諸如Microsoft 的OpenAI、Nvidia、Google 甚至Meta 這樣的傳統科技巨頭。

發生了什麼?為什麼這一次巨頭贏過了初創?初創企業可以寫出優秀代碼,但與科技巨頭相比,它們面臨多種阻礙:

  • 計算成本居高不下

  • AI 發展存在反向凸角:由於缺少必要的方針,圍繞AI 社會影響的擔憂和不確定性阻礙了創新

  • AI 黑盒問題

  • 大型科技公司建立的“數據護城河”形成進入壁壘


那麼,為什麼需要區塊鏈技術出場?它與人工智能的交集在哪?雖然不能一次性解決所有問題,但Web3中的分佈式物理基礎設施網絡(DePIN)降低

  • 降低驗證

  • 驗證創作者和人格

  • 填補AI 民主和透明度

  • 設置下文中:


下文中:

  • “web3”指下一代互聯網,區塊鏈技術與其他現有技術是其有機組成。

  • “區塊鏈”一級標題

  • “加密”一級標題

一、降低基礎設施成本(計算和存儲)

每一波技術創新的引子都是某種昂貴的東西變得廉價到可以浪費。

——社會的技術債務和軟件的古騰堡時刻,來自SK Ventures

基礎設施的可負擔性有多重要(人工智能的基礎設施指計算、傳輸和存儲數據的硬件成本),圖片描述圖片描述

來源:Carlota Perez 的技術革命理論

  • 安裝階段“推動式”市場推廣(GTM)策略為特徵,因為客戶不了解新技術的價值主張。

  • 部署階段以基礎設施供應的大量增加為特徵,降低拉新門檻,並採用“拉動式”市場推廣(GTM)策略,表明產品市場匹配度高,客戶期待更多尚未成型的產品。

問題問題

問題

當前物理基礎設施領域主要由垂直一體化寡頭壟斷,包括AWS、GCP、Azure、Nvidia、Cloudflare、Akamai 等,行業利潤率高,據估計AWS 在商品化計算硬件上的毛利率為61%。所以AI 領域、尤其是LLM 領域的新進入者要面對及其高昂的計算成本。

  • ChatGPT 一次訓練的成本估計在4 百萬美元,硬件推理運營成本約70 萬美元/天。

  • Bloom 第二版可能需要花費1000 萬美元進行訓練和重新訓練。

  • 解決方案圖片描述

解決方案

解決方案

DePIN 網絡如Filecoin(起源於2014 年的DePIN 先驅,專注集合互聯網級硬件,服務於分佈式數據存儲)、BacalhauGensyn.aiRender Network、ExaBits(用於匹配CPU/GPU 供需的協調層)可以通過以下三個方面節約75% 至90% +的基礎設施成本:

1. 推動供應曲線,激發市場競爭

DePIN 為硬件供應商成為服務提供商提供了平等機會。它創建了一個人人可以作為“礦工”加入,用CPU/GPU 或存儲能力可換取經濟報酬的市場,從而給現有提供商帶來競爭。

雖然像AWS 這樣的公司無疑在用戶界面、運營和垂直整合方面享有17 年的先發優勢,但是DePIN 吸引了無法接受中心化供應商客定價的新戶群。就像Ebay 不直接與Bloomingdale 競爭,而是提供更經濟的替代品來滿足類似需求,分佈式存儲網絡並不取代中心化供應商,而是旨在服務於價格敏感的用戶群體。

2.通過加密經濟設計促進市場經濟平衡

DePIN 創建的補貼機制能引導硬件供應者參與網絡,從而降低最終用戶的成本。究其原理,我們可以看看AWS 和Filecoin 在Web2和Web3中存儲提供者的成本和收入。

客戶獲得降價:DePIN 網絡營造了競爭性市場,引入Bertrand 式競爭,從而降低客戶支付費用。相比之下,AWS EC 2 需要約55% 的利潤率和31% 的總體利潤率來維持運營。 DePIN 網絡提供的也是也是新的收入來源。在Filecoin 的背景下,存儲提供者託管越多真實數據越能獲得區塊獎勵(代幣)。因此,存儲提供者有動力吸引更多客戶達成交易增加收入。幾個新興計算DePIN 網絡的代幣結構仍未公開,但很可能遵循類似模式。類似網絡包括:

  • Bacalhau:將計算引入數據存儲位置的協調層,避免移動大量數據。

  • exaBITS:服務於AI 和計算密集型應用程序的分佈式計算網絡。

  • Gensyn.ai:深度學習模型計算協議。

3. 降低間接成本:Bacalhau、exaBITS 等DePIN 網絡以及IPFS/內容尋址存儲的優勢包括:

  • 釋放潛在數據的可用性:由於傳輸大型數據集的帶寬成本高,目前大量數據未被開發,比如體育場館產生的大量事件數據。 DePIN 項目可以現場處理數據並僅傳輸有意義的輸出,發掘潛在數據的可用性。

  • 降低運營成本:通過本地獲取數據來降低數據輸入、傳輸和導入/導出成本。

  • 最小化敏感數據共享中的人工作業:如果醫院A 和B 需要將各自患者的敏感數據進行組合分析,它們可以使用Bacalhau 協調GPU 算力,直接在本地處理敏感數據,而不必通過繁瑣的行政流程與對方進行個人身份信息(PII)交換。

  • 無需重計算基礎數據集:這篇文章這篇文章

問題一級標題

問題

問題

一份近期調研顯示,50% 的AI 學者認為AI 給人類帶來毀滅性傷害的可能性超過10% 。

比如,在

比如,在圖片描述圖片描述

來源:Bloomberg

值得注意的是,AI的社會影響力遠不止虛假博客、對話和圖像帶來的問題:

  • 2024 年美國大選期間,AI 生成的deepfake 競選內容首次達到了以假亂真的效果。

  • 參議員Elizabeth Warren 的一段視頻經過編輯,讓她“說”出了"共和黨人不應該被允許投票"這樣的話(已闢謠)。

  • 語音合成的拜登的聲音批評跨性別女性。

  • 一群藝術家對Midjourney 和Stability AI 提起了集體訴訟,指控其未經授權使用藝術家的作品來訓練AI,侵犯版權並威脅藝術家生計。

  • AI 生成的由The Weeknd 和Drake 合唱的歌曲“Heart on My Sleeve”在流媒體平台上走紅,但隨後被下架。當新技術在沒有規範的情況下進入主流,就會造成諸多問題,解決方案

解決方案

解決方案

利用加密鏈上來源證明進行人格證明和創作者證明

讓區塊鏈技術真正發揮作用——作為一個包含不可篡改鏈上歷史記錄的分佈式賬本,數字內容的真實性可以通過內容加密證明得到驗證。

數字簽名作為創作者證明和人格證明

要識別deepfake,可用原始內容創作者獨有的數字簽名生成加密證明,簽名可以使用只有創作者知曉的私鑰創建,並可由對所有人公開的公鑰進行驗證。有了簽名就可以證明內容是由原始創作者創建,不論創建者是人類還是AI,還可以驗證授權或未授權的對內容的更改。

利用IPFS 和默克爾樹進行真實性證明

IPFS 是使用內容尋址和默克爾樹引用大型數據集的分佈式協議。為了證明文件內容收到、更改,會生成一個默克爾證明,即一串哈希,顯示特定的數據塊在默克爾樹中的位置。每次更改,都會在默克爾樹中增加一個哈希,提供了文件修改的證明。

加密方案的痛點是激勵機制,畢竟,識別出deepfake 製造者雖然能減少負面社會影響,但不會帶來同等的經濟利益。這份責任很可能落在Twitter、Meta、Google 等主流媒體分發平台上,事實也的確如此。那麼我們為什麼需要區塊鏈?

答案是區塊鏈的加密簽名和真實性證明更加有效、可驗證和確定。目前,檢測deepfake 的過程主要通過機器學習算法(如Meta 的“Deepfake Detection Challenge”、Google 的“Asymmetric Numeral Systems” (ANS)和c 2 pa:https://c 2 pa.org/)來識別視覺內容中的規律和異常,但時常不夠準確,落後於deepfake 發展速度。一般需要人工審核來確定真實性,低效且昂貴。

如果有一天每條內容都有加密簽名,每個人都能可驗證地證明創作來源,標記篡改或偽造行為,那我們將迎來美麗的世界。

問題一級標題

問題

問題

今天的AI 是由專有數據和專有算法構成的黑盒。大型科技公司LLM 的封閉性扼殺了我眼中的“AI 民主”,即每個開發者甚至用戶都能為LLM 模型貢獻相關文章相關文章相關文章)。

AI 民主=可視性(能看到輸入模型的數據和算法)解決方案解決方案

解決方案

對於

目前——

對於客戶:

  • 單向接收LLM 輸出

  • 對於

對於開發者:

  • 可組合性低

  • ETL 數據處理不可追溯,難復現

  • 數據貢獻來源僅限於數據所有機構

  • 閉源模型只能通過API 付費訪問

  • 分享數據輸出缺乏可驗證性,數據科學家80% 的時間用於低端數據清洗

對於

對於客戶:

用戶可提供反饋(比如偏見、內容審核、針對輸出的顆粒度反饋)作為微調依據

對於

對於開發者:

  • 分佈式數據管理層:眾包重複耗時的數據標記等數據準備工作

  • 可視性&組合&微調算法的能力,借助可驗證源(可以看到所有改動的防篡改歷史記錄)

  • 數據主權(通過內容尋址/IPFS 實現)和算法主權(例如Urbit 實現了數據和算法的點對點組合和可移植性)

  • 加速LLM 創新,從基礎開源模型的各種變體中加速LLM 創新。

  • 可複現訓練數據輸出,通過區塊鏈對過去ETL 操作和查詢的不可變記錄(如Kamu)實現。

問題exaBITS博文

一級標題

問題

問題

今天,最有價值的消費者數據為大型科技公司的專有資產,構成其核心商業壁壘。科技巨頭沒有動力將這些數據與外部方共享。

那麼,為什麼我們不能直接從數據創造者或用戶那裡獲取數據呢?為什麼我們不能把數據變成公共資源,貢獻數據將數據開源化供數據科學家使用?

簡單來說是因為缺乏激勵機制和協調機制。維護數據和執行ETL(提取、轉換和加載)是一大筆間接成本。事實上,僅數據存儲就將在2030 年成為價值7770 億美元的行業,這還不包括計算成本。沒有人會無償承擔數據處理的工作和成本。

Web3引入了解決方案

解決方案

Web3引入了名為“dataDAO”的新機制,促進了AI 模型所有者和數據貢獻者之間的收入再分配,為眾包數據貢獻創建了激勵層。由於篇幅限制,此處不會展開,想要了解可閱讀下方兩篇文章:

  • How DataDAO works/DataDAO 原理,作者是Protocol Labs 的HQ Han

  • How data contribution and monetization works in web3/web3數據貢獻和變現如何運作,我在這篇深入討論了dataDAO 的機制、欠缺和機遇


總的來說,DePIN 另闢蹊徑,為推動Web3和AI 創新提供了新的硬件能源。儘管科技巨頭主導了AI 行業,但新興參與者可以利用區塊鏈技術加入競爭:DePIN 網絡降低准入門檻的方式包括降低計算成本;區塊鏈的可驗證和分佈式特性使真正的開放式AI成為可能;dataDAO 等創新機制激勵數據貢獻;區塊鏈的不可變性和防篡改特性提供了創造者身份證明,打消人們對AI 負面社會影響的擔憂。

AI
Filecoin
歡迎加入Odaily官方社群